Планетарный редуктор: описание,преимущества,характеристики,принцип работы.

Устройство агрегата

Основа конструкции формируется всего тремя функциональными частями с одной осью вращения. Их представляет водило и два зубчатых центральных колеса. Также в устройстве предусматривается обширная группа вспомогательных звеньев в виде комплекта одноформатных зубчатых колес, коронной шестерни и подшипников. Из этого можно сделать вывод, что планетарная коробка передач – это механизм из семейства зубчатых «коробок», однако с принципиальным отличием. Оно заключается в условной независимости угловых скоростей у каждого из основных звеньев. Теперь стоит подробнее ознакомиться с элементами агрегата:

  • Водило – основа и обязательная часть любой планетарной системы, в том числе с дифференциальной связью. Это рычажный механизм, представляющий собой пространственную вилку, ось которой совмещается с общей осью передачи. При этом зубчатые оси с сателлитами вращаются вокруг нее в плоскостях размещения центральных колес.
  • Зубчатые колеса. В первую очередь следует разделять группы больших центральных и малых центральных колес этого типа. В первом случае речь идет о крупных колесах с внутренними зубцами – данная система носит название эпицикла. Что касается малых колес с зубьями, то они отличаются наружным расположением зубьев – также их называют солнечной шестерней.
  • Сателлиты. Колесная группа планетарной коробки передач (реже – одинарное зубчатое колесо), элементы которой обязательно имеют внешние зубья. Сателлиты располагаются в сцепке с обеими группами центральных колес. В зависимости от функциональности и мощности техники количество сателлитов может варьироваться от 2 до 6, но чаще всего используется 3 сегмента, поскольку в этом случае отпадает потребность в дополнительных уравновешивающих устройствах.

От чего зависит передаточное число планетарного редуктора?

Степень редуцирования (передаточное число) рассчитывается как отношение числа зубьев эпицикла и солнечной шестерни или их делительных диаметров. При этом количество зубьев на сателлитах на нее не влияет. Передаточное отношение простого одноступенчатого планетарного редуктора составляет от 3 до 10. При больших значениях не удается сохранить условие контактной прочности зубьев. Увеличение или уменьшение передаточного отношения в указанных пределах выполняется за счет изменения геометрии зубчатых колес.

Большие степени редуцирования можно получить двумя способами:

  • Последовательной установкой нескольких планетарных передач.
  • Встраивание конической зубчатой передачи (в качестве первой ступени) в планетарный редуктор.

Поскольку второй способ предполагает смещение оси вращения, чаще всего прибегают к установке конических прямозубых или гипоидных передач. Угловые редуктора нередко оказываются удачным решением для компоновки узла машины.

Пройти тест

Классификация планетарных редукторов:

По количеству ступеней планетарного редуктора выделяют:

одноступенчатый планетарный редуктор
  • одноступенчатые
  • многоступенчатые

Одноступенчатые редукторы наиболее компактны, в то время как многоступенчатые значительно сложнее по конструкции и занимают больше места, но позволяют достичь больших передаточных чисел.

По факту жесткого закрепления одного из элементов редуктора выделяют:

  • простейшие
  • дифференциальные

В простейших планетарных редукторах одно из звеньев жестко закреплено, и передача усилия происходит от одного из незакрепленных звеньев к другому с фиксированным передаточным числом. В дифференциальных редукторах ни один из элементов не закреплен, что позволяет использовать редуктор как дифференциальный механизм.

Достоинства и недостатки планетарных передач

Планетарная передача выигрывает у простых зубчатых механизмов аналогичной мощности компактным размером и массой меньшей в 2 — 3 раза. Используя нескольких планетных шестерней, достигается зацепление зубьев на 80%. Нагрузочная способность механизма повышается, а давление на каждый зубец уменьшается.

Кинематическая характеристика планетарного механизма доходит до 1000 с малым числом зубчатых колёс без применения многорядных конструкций. Помимо передачи планетарная схема способна работать как дифференциал.

За счёт соосности валов планетарного механизма, компоновать машины проще, чем с другими редукторами.

Применение планетарного ряда в АКПП снижает уровень шума в салоне автомобиля. Сбалансированная система имеет высокую вибропрочность за счет демпфирования колебаний. Соответственно снижается вибрация кузова.

Недостатки планетарного механизма:

  • сложное производство и высокая точность сборки;
  • в сателлиты устанавливают подшипники, которые выходят из строят быстрее, чем шестерня;
  • при повышении передаточных отношений КПД падает, поэтому приходится усложнять конструкцию.

Редуктор – принцип устройства и действия

Конструкция планетарной передачи имеет набор зубчатых колёс на вращающейся оси:

  1. Основной элемент – «солнечное» колесо, расположенное в центре.
  2. Важной деталью системы является водило, оно фиксирует оси остальных шестерёнок (сателлитов).
  3. Сателлиты – это шестерёнки одного размера, расположенные вокруг центрального колеса.
  4. Кольцевая шестерёнка – она объединяет все части редуктора, и контактирует с сателлитами. Это единственная деталь редуктора, которая находится в неподвижном состоянии.

Вращение центрального колеса приводит в движение сателлиты, которые перемещаются по периметру кольцевой шестерёнки. Этот процесс вращает оси сателлитов, а они дают движение водилу.

Виды планетарных редукторов

Встречается довольно большое количество разновидностей понижающих редукторов. Классификация проводится также по количеству ступеней:

  1. Одноступенчатые.
  2. Многоступенчатые.

Первый вариант исполнения намного проще, характеризуется меньшими размерами и обеспечивает более широкие возможности по передаче крутящего момента. Создание нескольких ступеней определяет существенное увеличение размеров конструкции, а диапазон передаточных чисел уменьшается.

Также классификация проводится по показателю сложности планетарного редуктора. Выделяют два основных типа:

  1. Простые.
  2. Дифференциальные.

На сегодняшний день дифференциальный редуктор получил весьма широкое распространение, так как позволяет передавать вращение требуемым образом в конкретном случае.

Выделяют виды в зависимости от формы корпуса, а также применяемым внутри элементам. Классификация выглядит следующим образом:

  1. Волновые.
  2. Конические.
  3. Червячные.
  4. Цилиндрические или колесного типа.

Их применение позволяет передавать вращение между пересекающимися, перекрещивающимися и параллельными валами. Именно поэтому планетарный редуктор получил широкое распространение.

Двухступенчатые планетарные мотор-редукторы применяются в случае, когда нужно передавать вращение с различной частотой. Некоторые варианты исполнения изготавливаются по схеме 3к, планетарные редукторы большой мощности зачастую имеют крупный размер, а при изготовлении основных частей применяется закаленная сталь, характеризующаяся высокой устойчивостью к износу.

Как работает планетарный редуктор

Работа планетарной передачи простейшей конструкции в случае остановленного эпицикла происходит следующим образом. Во вращение приводится солнечная шестерня. Вместе с ней начинают поворачиваться сцепленные с ней сателлиты. По мере того как сателлиты поворачиваются, они перекатываются по солнечной шестерне и по эпициклу. Тем самым они перемещаются вокруг солнечной шестерни, приводя во вращение водило, на котором закреплены оси сателлитов.

Конструкция планетарного механизма позволяет работать не только с остановленным эпициклом, используя в качестве входа солнечную шестерню, а в качестве выхода – водило. Из трёх перечисленных элементов: солнечная шестерня – водило – эпицикл любые два можно использовать как вход или как выход, а оставшийся третий – затормозить. Планетарная передача при таких способах включения всё равно будет работать, изменится лишь передаточное отношение как по величине, так и по знаку. Всего возможно шесть подобных способов включения, но наиболее широко применяется описанный выше: вход – солнечная шестерня, выход – водило, эпицикл – неподвижен. Такое включение имеет самое большое передаточное отношение из всех имеющихся способов.

Если в планетарном механизме вращаются, и солнечная шестерня и водило и эпицикл, то механизм начинает работать как дифференциал, позволяя производить сложение угловых скоростей на разных входах или их разложение угловой скорости на два различных выхода.

Расчет на прочность планетарных передач

Прочностной расчёт планетарных передач проводят как для цилиндрических зубчатых передач. Вычисляют каждое зацепление:

  • внешнее — между солнцем и планетными колёсами;
  • внутреннее — между планетами и короной.

Если колёса изготовлены из одного материала, а силы в зацеплении равны, рассчитывают наименее прочное соединение — внешнее.

Алгоритм расчёта следующий:

  1. Выбирают схему редуктора.
  2. Определяют исходные данные: передаточное число i, крутящий момент Твых и частоту вращения выходного вала Uвых.
  3. Подбирают число зубьев с проверкой условий сборки и соседства планетных шестерней.
  4. Рассчитывают угловые скорости колёс.
  5. Вычисляют КПД и моменты выходных валов.
  6. Рассчитывают прочность зацепления.

В расчёте момента учитывают количество планетных колёс и неравномерное нагружение их зубьев. Вводят поправочный коэффициент η =1,5…2, если меры выравнивания отсутствуют:

  • повышенная точность изготовления;
  • радиальная подвижность солнца, короны или водила;
  • применение упругих элементов.

Расчёт зубчатых передач выполняют по двум критериям:

  • контактная прочность, т.е. выносливость рабочих поверхностей зубьев под нагрузкой;
  • напряжение на изгиб, усталостный излом.

Расчёт контактной прочности сводится к проверке условия, что напряжение σн не превышает допустимого значения. Вычисления проводят по формуле Герца для цилиндрических поверхностей, добавляя уточняющие коэффициенты. В результате получают значение межосевого расстояния — главную геометрическую характеристику зубчатой передачи:

d=K×η×∛ (T×Kн(i±1))/(Ψ×i×[σн]^2),

где K — вспомогательный коэффициент для прямозубых колёс, МПа;

η — коэффициент неравномерности;

Т — вращающий момент, Н×мм;

Kн — коэффициент нагрузки;

Ψ — коэффициент ширины колеса равный 0,75;

i — передаточное число;

[σн] — допускаемое контактное напряжение, МПа. Определяется коэффициентом долговечности и пределом выносливости.

После определения геометрии передачи проверяют условие прочности:

σн= {310/(d×i)}×√ (T×Kн(i+1)^3)/(Ψ×d) ≤ [σн]

При расчёте на изгиб принимают условие, что вся нагрузка передаётся одной паре зубьев и приложена к его вершине. Расчётное напряжение не должно превышать допускаемое:

σf= (M/W) — (F/(b×s) ≤ [σf],

где М — изгибающий момент;

W — осевой момент сопротивления;

F — сила сжатия;

b, s — размеры зуба в сечении;

[σf] — допускаемое напряжение изгиба. Зависит от предела выносливости, шероховатости, погрешности изготовления зубьев.

Планетарный редуктор

Процедура механизации производственной и другой деятельности существенно повысила поставленные задачи. Довольно большое распространение получили механизмы, предназначенные для передачи вращения и распределения создаваемого усилия. Существует довольно большое количество различных редукторов, все они характеризуются своими определенными эксплуатационными характеристиками. Примером можно назвать планетарный редуктор, устройство которого имеет довольно большое количество различных особенностей. Рассмотрим подобный механизм подробнее.

Применение планетарного механизма

Впервые данный агрегат был использован в автомобиле Ford T в виде двухступенчатой коробки передач с ножным принципом переключения и ленточными тормозами. В дальнейшем устройство пережило немало преобразований, и сегодня в качестве новейшей версии механизмов данного типа можно назвать японскую планетарную коробку передач Prius. Принцип работы этого агрегата заключается в распределении энергии между силовой установкой (которая может быть и гибридной) и колесами. В процессе работы двигатель останавливается, после чего энергия направляется на генератор, в результате чего начинается движение колес.

При этом система может быть не только функционалом одной лишь коробки передач. Сегодня данное устройство применяют в редукторах, дифференциалах, в сложных кинематических схемах промышленного оборудования, в приводных системах спецтехники и самолетов. Передовые автогиганты осваивают и принципы работы механизма в составе с электромагнитными и электромеханическими приводами. Та же планетарная коробка передач Prius успешно применяется в гибридных электромобилях. Самой коробки передач в традиционном смысле в таких конструкциях нет, но есть подобие вариатора без ступенчатого переключения – комплекс планетарных шестерней, приводящий колеса в движение и получающий энергию от движка, как раз и выполняет эту функцию.

Передаточное число планетарных передач

Передаточным называют отношение частоты ведущего вала планетарной передачи к частоте ведомого. Визуально определить его значение не получится. Механизм приводится в движение разными способами, а значит передаточное число в каждом случае различно.

Для расчёта передаточного числа планетарного редуктора учитывают число зубьев и систему закрепления. Допустим, у солнечной шестерни 24 зуба, у сателлита — 12, у короны — 48. Водило закреплено. Ведущим становится солнце.

Сателлиты начнут вращаться со скоростью, передаваемой солнечной шестернёй. Передаточное отношение равно: -24/12 или -2. Результат означает, что планеты вращаются в противоположном направлении от солнца с угловой скоростью 2 оборота. Сателлиты обкатывают корону и заставляют её обернуться на 12/48 или ¼ оборота. Колёса с внутренним закреплением вращаются в одном направлении, поэтому число положительное.

Общее передаточное число равно отношению числа зубьев ведущего колеса к количеству зубьев ведомого: -24/48 или -1/2 оборота делает корона относительно солнца при зафиксированном водиле.

Если водило станет ведомым при ведущем солнце, то передаточное отношение: (1+48/24) или 3. Это самое большое число, какое способна предложить система. Самое маленькое отношение получается при фиксировании короны и подачи момента на водило: (1+/(1+48/24)) или 1/3.

Передаточные числа простой планетарной схемы: 1,25 — 8, многоступенчатой: 30 — 1000. С ростом кинематической характеристики КПД снижается.

Сборка планетарного редуктора в SOLIDWORKS

Теперь перейдем к сборке редуктора. Для начала сделаем небольшие приготовления.

Моделирование деталей редуктора

Шаг 1. Сначала необходимо смоделировать детали, которые входят в сборку редуктора (корпус редуктора, крышки, валы, шестерни и т.д.).

В конструкцию планетарной передачи входят:

  • Солнечная шестерня – зубчатое колесо небольшого диаметра с зубьями, нарезанными по внешнему ободу. Ось солнечной шестерни совпадает с осью редуктора.
  • Коронная шестерня (эпицикл) – колесо с внутренними зубьями. Диаметр значительно больше, чем у солнечной шестерни. Размер эпицикл а ограничивается размерами корпуса редуктора.
  • Водило – центральный элемент планетарной передачи. Передает вращательное движение и распределяет нагрузку на сателлиты. Основная ось расположена по оси редуктора, а на самой вилке устанавливаются подвижные оси сателлитов, вращающихся концентрически в той же плоскости, что и солнечная шестерня, и коронная.
  • Сателлиты – одно- или многовенцовые колеса с нарезкой зубьев с наружной стороны. Имеют постоянное пятно контакта (зацепление) с эпициклом и зубчатой солнечной шестерней. Как правило, в устройстве планетарного редуктора присутствуют в количестве 3 штук, но в разных модификациях их количество может отличаться (2–6 сателлитов).

Элементы конструкции устанавливаются в общий корпус редуктора, который заполняется смазкой, обеспечивающей долгосрочную эксплуатацию подвижных деталей за счет снижения силы трения.

Для удобства построения сборки все детали сохраняем в одну папку.

Выше представлены изображение некоторых смоделированных деталей редуктора, это корпусные детали и упомянутые выше детали самой планетарной передачи.

Управляющие элементы механизма

При сохранении нескольких степеней свободы устройство можно использовать в качестве основного самодостаточного функционала. Но если выбирается модель с одним ведущим и одним ведомым звеном (режим редуктора), то необходимо будет задавать им определенные скорости. Для этого и применяются управляющие элементы планетарной коробки передач. Принцип их действия заключается в перераспределении скоростей за счет фрикциона и тормоза. Лишние степени свободы снимаются, а основные свободные узлы становятся опорными.

Фрикционы отвечают за соединение двух свободных звеньев или одного звена (тоже свободного) с внешним мощностным подводом. Обе конфигурации фрикционов в условиях блокировки обеспечивают контролируемым звеньям определенную угловую скорость, причем не нулевую. По конструкции такие элементы представляют собой многодисковые муфты, но иногда встречаются и обычные муфты для передачи момента.

Что касается тормоза, то его задача в управляющей инфраструктуре планетарной коробки передач заключается в соединении свободных звеньев с корпусом механизма. Данный элемент в условиях блокировки наделяет свободные звенья нулевой угловой скоростью. По техническому устройству такие тормоза схожи с муфтами, но в самых простых исполнениях – однодисковых, колодочных и ленточных.

Планетарные редукторы в станках MULTICUT

Конструкция планетарного редуктора отличается высокой сложностью, и чтобы проявился весь комплекс его преимуществ, точность изготовления механизма должна быть очень высокой. Высокие требования предъявляются к соосности всех вращающихся деталей, к профилю и термообработке зуба. Важное условие работоспособности – герметичность уплотнений на входном и выходном валах. При выборе механического силового агрегата нужно учитывать не только заявленные в паспорте технические характеристики, но и обращать внимание на производителя.

В планетарных приводах станков MULTICUT мы используем японские редукторы SHIMPO. Производитель специализируется на изготовлении приводной механики общепромышленного применения и специализированных узлов. Благодаря высокой точности нарезки зуба и прецизионной балансировке вращающихся деталей планетарные редукторы SHIMPO отличаются низким уровнем вибрации при работе на максимальных скоростях вращения и высокой точностью. Например, в планетарных серворедукторах общего назначения серии VRB максимальный люфт не превышает 3 угловых минут.

К особенностям конструкции SHIMPO можно отнести:

  • широкий диапазон передаточных чисел (3 – 100);
  • жесткий выходной вал;
  • легкий алюминиевый корпус;
  • автоматическое центрирование с мотором, обеспечивающее хорошую соосность;
  • исполнение IP65.

Для получения профессиональных консультаций по выбору элементов привода для станков MULTICUT отправьте ваши вопросы сотрудникам компании через обратную связь или задайте в телефонном режиме.

Варианты планетарного редуктора: отличия друг от друга

Планетарные редукторы имеют большое количество разновидностей, отличающихся друг от друга по самым различным признакам. Отличия могут заключаться в конструктивной схеме – несколько солнечных шестерён, водил или эпициклов, вместо одной солнечной шестерни, одного водила и одного эпицикла в простейшем варианте редуктора. В некоторых вариантах редукторов плоскости вращения различных планетарных колёс могут быть не параллельны друг другу (пространственные планетарные механизмы).

Количество сателлитов также может изменяться. Обыч Количество сателлитов также может изменяться. Обыч
Для построения планетарного редуктора могут быть использованы различные виды зубчатых колёс: прямозубые, косозубые, шевронные, конические. Использование каждого из этих видов зубчатых колёс может придать редуктору особенные свойства. Например, косозубые зубчатые колёса могут быть использованы для построения малошумных редукторов.

Количество сателлитов также может изменяться. Обычно используется от трёх (наиболее распространённый вариант) до шести сателлитов (выходные ступени компактных высоконагруженных редукторов). Форма сателлитов также может быть различной – например двухвенцовые зубчатые колёса в планетарных редукторах, построенных по сложным конструктивным схемам или разрезные подпружиненные зубчатые колёса в редукторах с пониженным люфтом.

Ремонт редуктора своими руками

Ремонт редуктора своими руками является весьма непростой задачей. Так, данный механизм очень непростой и состоит из множества частей. При ремонте своими руками часто можно даже при разборке не ведая, что внутри просто растерять целую кучу маленьких деталей, например, иголки моментально рассыпаются и теряются. Ремонт планетарного редуктора лучше всего оставить профессионалам.

Стоит отметить, что на сегодняшний день планетарный редуктор весьма распространен и используется в большинстве грузовых автомобилей в ведущих мостах, а также очень часто встречается в роли лебедок.

Как и все редукторы, он может быть как одноступенчатым, так и многоступенчатым. Если Вы собираетесь приобрести механизм данного типа, то лучше всего покупать его у проверенных производителей, так как ремонт своими руками очень затруднен, а если он будет часто выходить из строя, то денег на него будет уходить много. В данной статье мы попытались собрать общую информацию по устройствам планетарного типа использующихся для производства автомобилей. Также нужно сказать, что данный вид устройства очень интенсивно внедряется во многие сферы и отрасли благодаря своим очень весомым преимуществам.

Применение

Сегодня электродвигатель с планетарным редуктором получили весьма широкое распространение, могут применяться в самых различных случаях. Область применения во многом зависит от конструктивных особенностей устройства и его характеристик. Выделяют следующие варианты исполнения:

  1. Цилиндрические. Это связано с тем, что конструктивные особенности позволяют обеспечить КПД около 95%. Назначение редуктора с планетарной передачей заключается в передаче достаточно большого усилия между параллельными и соосным валами. Передача вращения осуществляется за счет прямозубых, косозубых и шевронных колес. Коэффициент может варьировать в пределе от 1,5 до 600. Достоинством подобного варианта исполнения можно также назвать компактные размеры, а также высокую степень защиты от воздействия окружающей среды.
  2. Конические сегодня также встречаются довольно часто. Конструктивной особенностью можно назвать то, что шестерни имеют коническую форму. За счет подобной формы обеспечивается плавность сцепки, а также высокую степень устойчивости к нагрузкам. В алы в данном случае могут располагаться вертикально или горизонтально.
  3. Могут применяться и волновые устройства. Они характеризуются тем, что имеют гибкое промежуточное число. Основными конструктивными элементами можно назвать эксцентрики и кулачки, которые обеспечивают растяжение гибкого колеса. Подобный вариант исполнения характеризуется высоким передаточным числом, плавностью хода и повышенной степенью герметичности. Выделяют несколько различных разновидностей этого механизма, к примеру, могут применяться различные типы подшипников.

Несмотря на достаточно сложную конструкцию, она получила весьма широкое распространение. Примером можно назвать машиностроительную область, станкостроение и производство различных механизмов. Примером можно назвать автомобильную коробку передач, которая предназначена для передачи вращения и изменения предаваемого усилия или скорости.

Следует уделить довольно много внимания и подбору наиболее подходящего варианта исполнения. Если установленное устройство не будет обладать требуемыми свойствами, то есть вероятность выхода конструкции их строя при ее применении.

Наиболее важными параметрами выбора можно назвать

Наиболее важными параметрами выбора можно назвать следующие показатели:

  1. Тип передачи, которая применяется для передачи вращения.
  2. Максимально допустимая осевая и консольная нагрузка. На момент эксплуатации редуктора нагрузка, возникающая на момент работы распределяется самым различным образом.
  3. Имеет значение и размер редуктора. Слишком большой показатель определяет отсутствие возможности установки в тех или иных условиях. Однако, нужно уделить внимание тому моменту, что увеличение мощности достигается исключительно за счет увеличения размеров устройства. Поэтому приходится подбирать более оптимальный вариант исполнения.
  4. Диапазон температур, при которых механизм может применяться. Тип применяемого материала при изготовлении корпуса и основных элементов определяет то, в каких условиях устройство может эксплуатироваться. Слишком высокая температура становится причиной повышения пластичности и снижения твердости поверхности, за счет чего есть вероятность деформации и износа изделия. Для обеспечения охлаждения проводится добавление масла. Не все варианты исполнения могут применяться для длительной работы, некоторые могут эксплуатироваться только периодически.
  5. Популярность производителя также имеет значение. Некоторые заводы характеризуются тем, что производят качественные и долговечные механизмы.

Все наиболее важные параметры указываются в инструкции по эксплуатации, что существенно упрощает процесс выбора подходящего варианта исполнения.