Измерение постоянного и переменного тока амперметром (ампервольтметром)

История происхождения

По названию устройства можно догадаться о том, кто приложил руку к его созданию. Андре-Мари Ампер – блестящий ученый своего времени, многие годы посвятивший электродинамике. Ему принадлежат многие знаковые открытия в этой области:

  • взаимодействие магнитного поля и электрического тока;
  • магнитный эффект катушки с током;
  • введение в научную терминологию понятия кибернетики и кинематики.

Основная заслуга ученого – не разработка прибора, а подготовка научного плацдарма для самой возможности создания амперметра и вольтметра. Поэтому первые упоминания измерительного устройства датируют 20-ми годами XIX века, когда самому Амперу было уже за 50.

Тогда речь шла о самом простом приборе – гальваноскопе, состоящем из закрученной проволоки и магнитной стрелки. Он позволял уловить относительные показатели по градусу отклонения стрелки.

Гальванометр – прототип амперметра
Гальванометр – прототип амперметра

В течение следующих десятилетий конструкция совершенствовалась. В 1884 году отечественными учеными были разработаны более совершенные приборы, однако патенты были переданы в Германию, ввиду недостаточного развития электротехнического производства. Лишь к тому времени были утверждены названия современных величин. В 1881 г. в отношении тока приняли решение о том, в чем измеряется сила – в Амперах.

Как устроены амперметры сегодня? В корпусе с индикацией располагаются измерительная катушка и постоянные магниты, которые выравнивают ее при подаче электрического тока. Чем сильнее отклонение, тем выше показатель прибора. Существует несколько разновидностей, отличающихся конструкцией и областью применения.

К сведению. Классический вид – прибор со шкалой, деления которой обозначают силу тока в Амперах. В зависимости от величины, движущийся элемент поворачивает стрелку на определенный угол.

Что еще нужно знать про амперметры переменного тока

В практических измерениях силы тока используют 3 основные единицы — собственно ампер, микроампер и миллиампер. Сокращенные обозначения — А, мкА и мА соответственно. По используемой единице измерения выделяют:

Шунты, которые раздвигают диапазон измерений, подсоединяют при помощи особых гаек. Подключение шунта к измерительному прибору должно производиться строго до включения питания. Необходимо внимательно следить за соблюдением полярности при подключении, в противном случае прибор «измерит» отрицательное значение силы тока. Электромагнитный амперметр менее чувствителен, чем магнитоэлектрический, но зато подходит как раз для замеров переменного тока.

Но преимуществом в этом случае будет лучшая защита от негативных внешних факторов. Отпадает необходимость использовать внешние защитные экраны для противодействия наводкам. Сама конструкция — чисто механически — проста и надежна, стабильна при любых нормальных ситуациях. Из-за этого ферродинамический амперметр используют в ответственных отраслях промышленности и на оборонных объектах. Пользоваться им к тому же сравнительно просто, а точность замеров выше, чем у других аналоговых аппаратов.

Свои преимущества есть и у цифрового амперметра. Он находит применение как в производстве, так и в повседневной жизни. Подобные устройства сравнительно невелики, но очень точны. Кроме того, они:

  • имеют меньшую массу, чем аналоговые приборы;
  • не подвержены воздействию вибраций;
  • сохраняют работоспособность после слабого удара;
  • одинаково эффективны в горизонтальном или вертикальном положении;
  • могут переносить довольно значительные колебания температур и давления.

Если нужны максимально точные замеры, следует отдавать предпочтение амперметрам с сопротивлением не более 0,5 Ом. Очень хорошо, когда зажимы контактов подвергаются антикоррозийной обработке. При выборе устройства нужно смотреть и на качество изготовления корпуса. Малейшие механические дефекты там совершенно недопустимы, как и любое нарушение герметичности. Попадание внутрь воды либо водяных паров не только сокращает срок службы амперметра, но и многократно понижает достоверность его показаний.

Что такое амперметр переменного тока, смотрите далее.

Устройство амперметра

В основе устройства амперметра, также как миллиамперметра – взаимодействие между двумя элементами при прохождении электрического тока. В зависимости от того, что измеряет амперметр, используются свои варианты устройств. Замер сил разного типа тока предполагает особое строение и чувствительность. Существует несколько категорий:

  1. Магнитоэлектрические. В основе лежит подвижная катушка, закрепленная на оси между двумя магнитными полюсами.
  2. В электромагнитных амперметрах используется сердечник, отодвигаемый на пропорциональное силе тока расстояние.
  3. Термоэлектрические. Ключевой элемент – термопара, припаянная к проводке. Величина нагрева по мере подачи тока разной величины трансформируется в показатель его силы, после чего выводится на дисплей.
  4. Электродинамические. Подвижная и неподвижная катушки. В быту малоприменимы из-за высокой чувствительности к магнитным полям. Применяются для точных измерений либо в демонстрационных целях.
  5. Ферродинамические. Самые точные и дорогие из механических приборов. Благодаря замкнутому проводу, не реагируют на внешние магнитные поля.
  6. Цифровой. Используется интегратор, преобразующий величину тока в цифровой эквивалент. От его типа и настройки зависит то, как работают амперметры. Различают несколько классов точности по погрешности измерений.

Несмотря на разницу в конструкции, в основе всех механических приборов лежит общий принцип действия.

Особенности конструкции

Устройство амперметра зависит непосредственно от модели и производителя.

У классического амперметра имеется катушка, стрелка и градуированная шкала. Через катушку устройства проходит некоторая часть тока, который необходимо измерить. Это количество тока обратно пропорционально сопротивлению катушки. Она включена параллельно шунту (калиброванный) малого сопротивления.

Выпрямленный или прямой ток проходит через катушку. Это приводит к повороту стрелки аппарата. В связи с этим угол наклона стрелки становится пропорционален величине электрического тока, который надо измерить.

Благодаря катушке аппарата, электрический ток инициирует крутящий момент. Он получается в результате взаимодействия магнитного поля амперметра и магнитного поля стационарного магнита. Так как катушка и стрелка соединены, то катушка наклоняется в соответствии с углом и показывает значение электрического тока непосредственно на шкале.

Помимо классического типа устройства, существует также цифровой.

Электрическая схема цифрового амперметра:

Переградуировка прибора

Новую градуировку обновлённого стрелочного амперметра под новый шунт нужно произвести следующим образом.

    Амперметр с новым шунтом готов к работе. Можно подключить щупы или токовые клещи.

    Разновидности

    Описываемый измерительный прибор прошел долгий путь и множество модернизаций. На сегодняшний день существуют аналоговые и цифровые виды этих устройств. Также существуют: магнитоэлектрические, электромагнитные, электродинамические, ферродинамические типы амперметров. Каждый тип имеет свои особенности устройства и работы с ним. Далее будет описан более подробно каждый тип.

    Магнитоэлектрический прибор

    Особенностью этих приборов является магнитная катушка, которая приходит в движение при воздействии электрического напряжения.

    Все подобные устройства используются для измерения

    Все подобные устройства используются для измерения силы постоянного тока. Преимуществом является очень высокая чувствительность и точность измерения.

    Электромагнитный

    Прибор не имеет в своей конструкции вращающейся катушки.

    Изменение угла положения стрелки на циферблате про

    Изменение угла положения стрелки на циферблате происходит за счет магнитного поля, воздействующего на сердечники катушек. Подобные амперметры универсального типа. С их помощью можно замерять силу постоянного и переменного тока. Главным недостатком является наличие погрешности.

    Электродинамический

    Прибор по конструкции схож с магнитоэлектрическим. Основное отличие заключается в наличие подвижной и неподвижной катушек.

    При подключении, магнитные поля двух элементов воз

    При подключении, магнитные поля двух элементов воздействуют друг на друга, что приводит к изменению положения стрелки. Прибор достаточно точный. Единственный недостаток в том, что на его работу могут влиять посторонние магнитные поля.

    Ферродинамический

    Этот измерительный прибор считается наиболее точным. Устройство амперметра, включает в себя провод из феррита, металлический сердечник и катушку.

    Работает прибор по принципу вращения катушки, за с

    Работает прибор по принципу вращения катушки, за счет образования магнитного поля. Основной особенностью является полная независимость от воздействий посторонних магнитных полей. Обладает высокой чувствительностью.

    Электронный

    С развитием электроники, амперметры стали выпускать в цифровых вариациях. Наиболее известны 2: простой бытовой мультиметр и тестер с токоизмерительными клещами.

    Основным преимуществом подобных приборов является

    Основным преимуществом подобных приборов является простота и универсальность измерения силы тока. Они не восприимчивы к воздействию внешних магнитных полей, не боятся ударов, мелких повреждений и тряски. Близок к идеальному амперметру.

    Для информации! Идеальный амперметр — амперметр с нулевым собственным сопротивлением.

    Все описанные приборы используются и по сей день,

    Все описанные приборы используются и по сей день, в приборостроении, лабораториях, промышленности и отдельными энтузиастами.

    Амперметр

    Амперметр — это прибор, который используется для измерения силы тока. Он представляет собой устройство со шкалой и стрелкой. Внутри устройства располагается металлическая или магнитная рама. Внутри рамы установлена катушка. Принцип работы амперметра следующий:

    1. Через катушку проходит электрический ток.
    2. Ток создает магнитное поле, которое сдвигает стрелку прибора.

    Измерение имеет практически нулевую погрешность, по причине того, что сопротивление амперметра совсем незначительное. Оно не может влиять или изменять параметр проходящего напряжения.

    Табло каждого механического амперметра имеет шкалу

    Табло каждого механического амперметра имеет шкалу. Шкала показывает предел измерения амперметра. Подобными устройствами можно измерять от высокой величины 10 Ампер, до самой низкой в единицах до 200 микроампер. При работе необходимо учитывать предел измерений. Его можно расширить путем подключения трансформатора или шунтирующего элемента.

    При работе также необходимо знать, для измерения какого тока предназначен амперметр. Они бывают: постоянными и переменными. На шкале каждого устройства есть обозначение, для какого вида напряжения предназначено устройство.

    Амперметр постоянного тока используется для замера силы тока в приборах, которые работают через понижающий трансформатор и диодный мост. Часто потребители оснащаются амперметрами для контроля величины нагрузки. В принципиальной схеме очень легко найти амперметр — он обозначается буквой «А», заключенной в круг.

    Амперметры переменного тока используются для замера нагрузки бытовых или высоковольтных сетей. Они работают при параллельном подключении трансформатора или шунтирующего резистора с большой величиной сопротивления. Таким образом удается снизить нагрузку на сам измерительный прибор. Далее будут рассмотрены основные типы амперметров.

    Включение амперметра в цепь

    Существует два главных правила использования прибора:

    1. Подключать последовательно с элементом цепи, на котором необходимо измерить силу тока.
    2. Соблюдать полярность.
    Схема включения амперметра в цепь
    Схема включения амперметра в цепь

    Амперметры со стрелкой – это приборы для измерения с ограниченным диапазоном. В случае превышения максимального значения шкалы при включении в цепь используют шунт.

    Технические характеристики

    Как и конструкция, характеристики и параметры могут сильно отличаться в зависимости от производителя и модели.

    На примере модели амперметра M42100 рассмотрены средние характеристики.

    • Диапазон измерений: от 5 мА до 15 А (при непосредственном способе включения).
    • От 15 А до 6000 А (при способе включения с наружным шунтом на 75 мВ).
    • Рабочая температура: -50 до +60 градусов
    • Размеры: 80х80 мм (вырез в щите 77.5 мм).
    • Класс точности: 1.5.

    Чувствительность амперметра определяется величиной тока, необходимого катушке измерителя для создания отклонения указателя от полной шкалы. Чем меньше величина тока, необходимого для создания этого отклонения, тем выше чувствительность измерителя. Движение, которое требует только 100 микроампер для полного отклонения, имеет большую чувствительность, чем движение, которое требует 1 мА для того же отклонения.

    Возможные неисправности

    Главной и наиболее распространенной неполадкой любого рассматриваемого типа прибора являются неверные показатели полученный силы тока. Поэтому во время использования амперметр требуется иногда проверять на возникновение неполадок. Для этого просто необходимо сравнивать его данные с замерами контрольного устройства. Проверяемый прибор следует соединить последовательно с контрольным устройством, аккумулятором и реостатом. Если применяется такая схема, то можно применять устройства КИ 1093 либо ГАРО 531. Если используется последний вариант, то он будет работать в качестве эталонного устройства с шунтом наружного типа. Кнопку переключения типа проверок устанавливают в нужное положение. Если этот процесс осуществляется на автомобиле, то наружный шунт подключается последовательно с амперметром автомобиля.

    Тогда следует отсоединить кабель от аккумулятора и в разрыв включить шунт. Как нагрузку можно использовать электрическое оборудование автомобиля. Если амперметр исправен, то расхождение его замеров с цифрами контрольного устройства должно оказаться в допустимых пределах. Если амперметр проверяется на ГАРО 531, то в электроцепь, что будет состоять из аккумулятора, проверяемого прибора и реостата нагрузки требуется последовательно включить наружный шунт. А выводы от него следует присоединить к разъемам 1 и 2. Вместо реостата нагрузки, можно применить нагревательное устройство. Замер величины тока осуществляется по микроамперметру прибора, после чего его результаты сравниваются с результатами проверяемого устройства.

    В следующем видео вас ждет расчет шунта для амперметра.

    Особенности прибора

    Приборы классифицируют в зависимости от силы измеряемого тока – амперметры, микро- и миллиамперметры.

    Амперметры различаются в зависимости от того, насколько подробно представлена шкала с долями ампера:

    • для измерения в микроамперах – микроамперметры;
    • для измерения в миллиамперах – миллиамперметры и т.д.

    Пределы измерений можно расширить, если в цепь к амперметру добавить магнитный усилитель, трансформатор тока или шунт. Если использовать шунт, то нужно выбрать такой, чтобы сопротивление в рабочей катушке и в нем было 10:1, 100:1 или 1000:1.

    Шунт крепится к амперметру с помощью специальных гаек.

    Отключите питание электросети перед подключением шунта к амперметру.

    Подключая оборудования к сети важно учитывать его полярность – если подключить неправильно, прибор будет показывать отрицательные значения.

    Общая характеристика

    По конструкции амперметры делятся:

    • со стрелочной измерительной головкой без электронных схем;
    • со стрелочной измерительной головкой с использованием электронных схем;
    • с цифровым индикатором.

    Приборы со стрелочной головкой

    Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока.

    Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

    Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

    Приборы со стрелочной головкой могут снабжаться дополнительными электронными схемами для усиления сигнала, подаваемого на головку (для измерения токов, существенно меньших чем ток полного отклонения головки, который для большинства магнитоэлектрических приборов составляет 50 мкА и более), защиты головки от перегруза и прочее.

    Приборы с цифровым индикатором

    Дополнительные сведения:

    В последнее время приборы со стрелочной измерительной головкой стали вытесняться приборами с цифровым индикатором на основе жидких кристаллов и светодиодов.

    Принцип действия стрелочной измерительной головки

    Дополнительные сведения: Системы измерительных приборов

    Принцип действия самых распространённых в амперметрах систем измерения:

    В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент). С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки прямо пропорционален силе тока, поэтому шкала магнитоэлектрического прибора линейна. Направление поворота стрелки зависит от направления протекающего через рамку тока, поэтому магнитоэлектрические амперметры непригодны для непосредственного измерения силы переменного тока (стрелка будет дрожать возле нулевого значения), и требуют правильной полярности подключения в цепи постоянного тока (иначе стрелка будет отклоняться левее нуля).

    В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.

    В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.

    Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.

    Как рассчитать шунт для амперметра?

      	В случаях, когда требуется измерить электрическ

    В случаях, когда требуется измерить электрический ток, превышающий максимальное значение шкалы амперметра, необходимо использовать шунт. Его сопротивление рассчитывается по следующей формуле:

    Rш=(Rа*Iа)/(Iш-Iа)

    При этом:

    • Rш — искомое сопротивление шунта (в Омах);
    • Rа – внутреннее сопротивление амперметра (в Омах);
    • Iа — максимальная величина тока, измеряемая амперметром (в Амперах);
    • Iш — ориентировочная величина измеряемого тока (в Амперах).