Двигатель (ДВС): устройство, принцип работы, классификация

Определение и общие особенности работы ДВС

Главная особенность любого двигателя внутреннего сгорания состоит в том, что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. В процессе работы химическая и тепловая энергия от сгорания топлива преобразуется в механическую работу. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, которое образуется в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.

Характеристики двигателя

Такты рабочего циклаБензиновый двигательДизельный двигатель
ВпускТопливо-воздушная смесь, количество в зависимости от требуемой мощностиВоздух, количество не зависит от мощности
СжатиеТопливо-воздушная смесь, степень сжатия 7 – 12Воздух, степень сжатия 14 – 24, в конце такта сжатия происходит впрыск топлива
Давление сжатия: до 18 барДавление сжатия: 30 – 55 бар
Нагрев топливо-воздушной смеси: 400 – 500 °CНагрев воздуха: 600 – 900 °C
Сгорание (рабочий ход)Воспламенение от искры (принудительное воспламенение)Самовоспламенение впрыснутого топлива за счет высокой температуры
Максимальное давление: 30 – 60 барМаксимальное давление:160 бар
Температура в камере сгорания 2000 – 2500 °CТемпература в камере сгорания 1400 – 2000 °C
ВыпускТемпература отработавших газов: 900 °C на холостом ходу; 700 – 1000 °C при полной нагрузкеТемпература отработавших газов: 250 °C на холостом ходу; 550 – 750 °C при полной нагрузке

Система питания

Эта система обеспечивает подготовку топлива для дальнейшей подачи его в цилиндры. Конструкция этой системы зависит от используемого двигателем топлива. Основным сейчас является топливо, выделенное из нефти, причем разных фракций – бензин и дизельное топливо.

У двигателей, использующих бензин, имеется два вида топливной системы – карбюраторная и инжекторная. В первой системе смесеобразование производится в карбюраторе. Он производит дозировку и подачу топлива в проходящий через него поток воздуха, далее уже эта смесь подается в цилиндры. Состоит такая система и топливного бака, топливопроводов, вакуумного топливного насоса и карбюратора.

Карбюраторная система

Карбюраторная система

То же делается и в инжекторных авто, но у них дозировка более точная. Также топливо в инжекторах добавляется в поток воздуха уже во впускном патрубке через форсунку. Эта форсунка топливо распыляет, что обеспечивает лучшее смесеобразование. Состоит инжекторная система из бака, насоса, расположенного в нем, фильтров, топливопроводов, и топливной рампы с форсунками, установленной на впускном коллекторе.

У дизелей же подача составляющих топливной смеси производится раздельно. Газораспределительный механизм через клапаны подает в цилиндры только воздух. Топливо же в цилиндры подается отдельно, форсунками и под высоким давлением. Состоит данная система из бака, фильтров, топливного насоса высокого давления (ТНВД) и форсунок.

Отличие дизельного двигателя от бензинового

Недавно появились инжекторные системы, которые работают по принципу дизельной топливной системы – инжектор с непосредственным впрыском.

Система отвода отработанных газов обеспечивает вывод продуктов горения из цилиндров, частичную нейтрализацию вредных веществ, и снижение звука при выводе отработанного газа. Состоит из выпускного коллектора, резонатора, катализатора (не всегда) и глушителя.

Кривошипношатунный механизм

Кривошипно-шатунный механизм, входящий в конструкцию мотора, обеспечивает преобразование возвратно-поступательного перемещения поршня в гильзе во вращательное движение коленвала. Основным элементом этого механизма является коленвал. Он имеет подвижное соединение с блоком цилиндров. Такое соединение обеспечивает вращение этого вала вокруг оси.

К одному из концов вала прикреплен маховик. В задачу маховика входит передача крутящего момента от вала дальше. Поскольку у 4-тактного двигателя на два оборота коленвала приходится только один полуоборот с полезным действием – рабочий ход, остальные же требуют обратного действия, которое и выполняется маховиком. Имея значительную массу и вращаясь, за счет своей кинетической энергии он обеспечивает провороты колен. вала во время подготовительных тактов.

Устройство маховика

Окружность маховика имеет зубчатый венец, при помощи его выполняется запуск силовой установки.

С другой стороны вала размещается приводная шестерня масляного насоса и газораспределительного механизма, а также фланец для крепления шкива.

Этот механизм также включает шатуны, которые обеспечивают передачу усилия от поршня к коленвалу и обратно. Крепление к валу шатунов тоже производится подвижно.

Поверхности блока цилиндров, колен. вала и шатунов в местах соединения напрямую между собой не контактируют, между ними находятся подшипники скольжения – вкладыши.

Электрооборудование

Обеспечивает это оборудование электроэнергией бортовую сеть авто, в том числе и систему зажигания. Этим оборудование также производится и запуск двигателя. Состоит оно из АКБ, генератора, стартера, проводки, всевозможных датчиков, которые следят за работой и состоянием двигателя.

Это и все устройство двигателя внутреннего сгорания. Он хоть и постоянно совершенствуется, однако принцип работы его не меняется, улучшаются лишь отдельные узлы и механизмы.

Блок цилиндров

Теперь само устройство двигателя внутреннего сгорания. Основой любой установки является блок цилиндров. В нем и на нем располагаются все составные.

Конструктивные особенности блока зависят от некоторых условий – количества цилиндров, их расположения, способа охлаждения. Количество цилиндров, которые объедены в одном блоке, может варьироваться от 1 до 16. Причем блоки с нечетным количеством цилиндров встречаются редко, из выпускающихся ныне двигателей можно встретить только одно- и трехцилиндровые установки. Большинство же агрегатов идут с парным количеством цилиндров – 2, 4, 6, 8 и реже 12 и 16.

Четырёхцилиндровый блок

Четырёхцилиндровый блок

Силовые установки с количеством от 1 до 4 цилиндров обычно имеют рядное расположение цилиндров. Если количество цилиндров больше, их располагают в два ряда, при этом с определенным углом положения одного ряда относительно другого, так называемые силовые установки с V-образным положением цилиндров. Такое расположение позволило уменьшить габариты блока, но при этом изготовление их сложнее, чем рядным расположением.

Восьмицилиндровый блок

Восьмицилиндровый блок

Существует еще один тип блоков, в которых цилиндры располагаются в два ряда и с углом между ними в 180 градусов. Эти двигатели получили название оппозитных. Встречаются они в основном на мотоциклах, хотя есть и авто с таким типом силового агрегата.

Но условие количеством цилиндров и их расположением – необязательное. Встречаются 2-цилиндровые и 4-цилиндровые двигатели с V-образным или оппозитным положением цилиндров, а также 6-цилиндровые моторы с рядным расположением.

Используется два типа охлаждения, которые применяются на силовых установках – воздушное и жидкостное. От этого зависит конструктивная особенность блока. Блок с воздушным охлаждением менее габаритный и конструктивно проще, поскольку цилиндры не входят в его конструкцию.

Блок с жидкостным же охлаждением более сложен, в его конструкцию входят цилиндры, а поверх блока с цилиндрами расположена рубашка охлаждения. Внутри ее циркулирует жидкость, отводя тепло от цилиндров. При этом блок вместе рубашкой охлаждения представляют одно целое.

Сверху блок накрывается специальной плитой – головкой блока цилиндров (ГБЦ). Она является одной из составляющих, обеспечивающих закрытое пространство, в котором производится процесс горения. Конструкция ее может быть простая, не включающая дополнительные механизмы, или же сложная.

Рабочие процессы

Рис. 1. Схема поршневого двигателя внутреннего сгорания: 1 – ось коленчатого вала; 2 – кривошип; 3 – шатун; 4 – ось пальца поршня.

Под действием давления газообразных продуктов сгорания топлива поршень совершает в цилиндре возвратно-поступательное  движение, которое преобразуется во вращательное  движение коленчатого вала с помощью кривошипно-шатунного механизма. За один оборот коленчатого вала поршень дважды достигает крайних положений, где изменяется направление его движения (рис. 1).

Эти положения поршня принято называть мёртвыми точками, т. к. усилие, приложенное к поршню в этот момент, не может вызвать вращательного  движения коленчатого вала. Положение поршня в цилиндре, при котором расстояние оси пальца поршня от оси коленчатого вала достигает максимума, называется верхней мёртвой точкой (ВМТ). Нижней мёртвой точкой (НМТ) называют такое положение поршня в цилиндре, при котором расстояние оси пальца поршня до оси коленчатого вала достигает минимума. Расстояние между мёртвыми точками называют ходом поршня (S). Каждому ходу поршня соответствует поворот коленчатого вала на 180°. Перемещение поршня в цилиндре вызывает изменение объёма надпоршневого пространства. Объём внутренней полости цилиндра при положении поршня в ВМТ называют объёмом камеры сгорания Vc. Объём цилиндра, образуемый поршнем при его перемещении между мёртвыми точками, называется рабочим объёмом цилиндра Vц. Объём надпоршневого пространства при положении поршня в НМТ называют полным объёмом цилиндра Vп = Vц + Vc. Рабочий объём двигателя представляет собой произведение рабочего объёма цилиндра на число цилиндров. Отношение полного объёма цилиндра Vц к объёму камеры сгорания Vc называют степенью сжатия Е (для бензиновых ДсИЗ 6,5–11; для дизелей 16–23).

При перемещении поршня в цилиндре, кроме изменения объёма рабочего тела, изменяются его давление, температура, теплоёмкость, внутренняя энергия. Рабочим циклом называют совокупность последовательных процессов, осуществляемых с целью превращения тепловой энергии топлива в механическую. Достижение периодичности рабочих циклов обеспечивается с помощью специальных  механизмов и систем двигателя.

Рис. 2. Схема работы поршневого четырёхтактного двигателя внутреннего сгорания.

Рабочий цикл бензинового четырёхтактного ДВС совершается за 4 хода поршня (такта) в цилиндре, т. е. за 2 оборота коленчатого вала (рис. 2).

Первый такт – впуск, при котором впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределённый впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При движении поршня от ВМТ к НМТ в цилиндре (вследствие увеличения объёма) создаётся разрежение, под действием которого через открывающийся впускной клапан поступает горючая смесь (паров бензина с воздухом). Давление во впускном клапане в двигателях без наддува может быть близким к атмосферному, а в двигателях с наддувом – выше его (0,13– 0,45 МПа). В цилиндре горючая смесь смешивается с оставшимися в нём от предыдущего рабочего цикла отработавшими газами и образует рабочую смесь. Второй такт – сжатие, при котором впускной и выпускной клапаны закрываются газораспределительным валом, и топливно-воздушная смесь сжимается в цилиндрах двигателя. Поршень движется вверх (от НМТ к ВМТ). Т.к. объём в цилиндре уменьшается, то происходит сжатие рабочей смеси до давления 0,8–2 МПа, температура смеси составляет 500–700 К. В конце такта сжатия, рабочая смесь воспламеняется электрической  искрой и быстро сгорает (за 0,001– 0,002 с). При этом происходит выделение большого количества теплоты, температура достигает 2000–2600 К, и газы, расширяясь, создают сильное давление (3,5– 6,5 МПа) на поршень, перемещая его вниз. Третий такт – рабочий ход, который сопровождается воспламенением топливно-воздушной смеси. Сила давления газов перемещает поршень вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля. Т.о., во время рабочего хода происходит преобразование тепловой энергии в механическую работу. Четвёртый такт – выпуск, при котором поршень после совершения полезной работы движется вверх, и выталкивает наружу, через открывающийся выпускной клапан газораспределительного механизма, отработавшие газы из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу. Процесс выпуска можно разделить на предварение (давление в цилиндре значительно выше, чем в выпускном клапане, скорость истечения отработавших газов при температурах 800–1200 К составляет 500– 600 м/сек) и основной  выпуск (скорость в конце выпуска 60–160 м/сек). Выпуск отработанных газов сопровождается звуковым эффектом, для поглощения которого устанавливают глушители. За рабочий цикл двигателя полезная работа совершается только в течение рабочего хода, а остальные три такта являются вспомогательными. Для равномерности вращения коленчатого вала на его конце устанавливают маховик, обладающий значительной массой. Маховик получает энергию при рабочем ходе и часть её отдаёт на совершение вспомогательных тактов.

Рабочий цикл двухтактного ДВС осуществляется за два хода поршня или за один оборот коленчатого вала. Процессы сжатия, сгорания и расширения практически аналогичны соответствующим процессам четырёхтактного двигателя. Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в 2 раза больше четырёхтактного за счёт большого числа рабочих циклов. Однако потери части рабочего объёма практически приводят к увеличению мощности только в 1,5–1,7 раза. К преимуществам двухтактных двигателей следует также отнести бо́льшую равномерность крутящего момента, т. к. полный рабочий цикл осуществляется при каждом обороте коленчатого вала. Существенным недостатком двухтактного процесса по сравнению с четырёхтактным является малое время, отводимое на процесс газообмена. Кпд ДВС, использующих бензин, 0,25–0,3.

Рабочий цикл газовых ДВС аналогичен бензиновым ДсИЗ. Газ проходит стадии: испарение, очистка, ступенчатое понижение давления, подача в определённых количествах в двигатель, смешение с воздухом и поджигание искрой рабочей смеси.

Система смазки

Система смазки обеспечивает снижение трения между взаимодействующими поверхностями двигателя, путем создания специальной пленки, предотвращающей прямой контакт поверхностей. Дополнительно осуществляет отвод тепла, защищает от коррозии элементы двигателя.

Состоит система смазки из масляного насоса, емкости для масла – поддона, маслозаборника, масляного фильтра, каналов, по которым масло движется к трущимся поверхностям.

Цилиндропоршневая группа

Состоит данная группа из гильз цилиндров, поршней, поршневых колец и пальцев. Именно в этой группе и происходит процесс сгорания и передача выделяемой энергии для преобразования. Сгорание происходит внутри гильзы, которая с одной стороны закрыта головкой блока, а с другой – поршнем. Сам поршень может перемещаться внутри гильзы.

Чтобы обеспечить максимальную герметичность внутри гильзы, используются поршневые кольца, которые предотвращают просачивание смеси и продуктов горения между стенками гильзы и поршнем.

Поршень посредством пальца подвижно соединен с шатуном.

Газораспределительный механизм

В задачу этого механизма входит своевременная подача горючей смеси или ее составляющих в цилиндр, а также отвод продуктов горения.

У двухтактных двигателей как такового механизма нет. У него подача смеси и отвод продуктов горения производится технологическими окнами, которые проделаны в стенках гильзы. Таких окон три – впускное, перепускное и выпускное.

Поршень, двигаясь производит открытие-закрытие того или иного окна, этим и выполняется наполнение гильзы топливом и отвод отработанных газов. Использование такого газораспределения не требует дополнительных узлов, поэтому ГБЦ у такого двигателя простая и в ее задачу входит только обеспечение герметичности цилиндра.

У 4-тактного двигателя механизм газораспределения имеется. Топливо у такого двигателя подается через специальные отверстия в головке. Эти отверстия закрыты клапанами. При надобности подачи топлива или отвода газов из цилиндра производится открывание соответствующего клапана. Открытие клапанов обеспечивает распределительный вал, который своими кулачками в нужный момент надавливает на необходимый клапан и тот открывает отверстие. Привод распредвала осуществляется от коленвала.

ГРМ с ременным и цепным приводом

ГРМ с ременным и цепным приводом

Компоновка газораспределительного механизма может отличаться. Выпускаются двигатели с нижним расположением распредвала (он находится в блоке цилиндров) и верхним расположением клапанов (в ГБЦ). Передача усилия от вала к клапанам производится посредством штанг и коромысел.

Более распространенными являются моторы, у которых и вал и клапана имеют верхнее расположение. При такой компоновке вал тоже размещен в ГБЦ и действует он на клапана напрямую, без промежуточных элементов.

Система охлаждения

Поддержание оптимальной рабочей температуры во время работы двигателя обеспечивается системой охлаждения. Используется два вида системы – воздушная и жидкостная.

Воздушная система производит охлаждение путем обдува цилиндров потом воздуха. Для лучшего охлаждения на цилиндрах сделаны ребра охлаждения.

В жидкостной системе охлаждение производится жидкостью, которая циркулирует в рубашке охлаждения с прямым контактом с внешней стенкой гильз. Состоит такая система из рубашки охлаждения, водяного насоса, термостата, патрубков и радиатора.

Классификация двигателей внутреннего сгорания

В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
  • карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;

Более детально узнать о назначении, устройстве и принципе работы карбюратора, вы можете здесь: Карбюратор: устройство и принцип работы  
  • инжекторные, в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
  • дизельные, в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается от температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
  • Роторно-поршневые двигатели внутреннего сгорания. В моторах данного типа тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
  • Газотурбинные двигатели внутреннего сгорания. В данных моторах преображение тепловой энергии в механическую работу осуществляется с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.
  • Наиболее надёжными, неприхотливыми, экономичными в плане расходования топлива и необходимости в регулярном техобслуживании, являются поршневые двигатели.

    Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.

    Аnbsp;как запускается первый такт?

    Каждый автомобиль обладает набором бортовой электроники — проводов, аккумулятора, стартера и т. д. Аккумулятор за время поездок накапливает достаточно энергии, чтобы при помощи специального механизма — стартера — раскрутить коленвал и завести мотор.

    Системы двигателя

    Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

    1. ГРМ (механизм регулировки фаз газораспределения);
    2. Система смазки;
    3. Система охлаждения;
    4. Система подачи топлива;
    5. Выхлопная система.